20 research outputs found

    A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype

    No full text
    Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the impact of ECM composition, density, mechanics, and topography on cell and tissue phenotype. However, these synthetic systems fail to accurately recapitulate the biological properties and structure of the native tissue ECM. Natural three dimensional (3D) ECM hydrogels, such as collagen or hyaluronic acid, feature many of the chemical and physical properties of tissue, yet, these systems have limitations including the inability to independently control biophysical properties such as stiffness and pore size. Here, we present a 3D tension bioreactor system that permits precise mechanical tuning of collagen hydrogel stiffness, while maintaining consistent composition and pore size. We achieve this by mechanically loading collagen hydrogels covalently-conjugated to a polydimethylsiloxane (PDMS) membrane to induce hydrogel stiffening. We validated the biological application of this system with oncogenically transformed mammary epithelial cell organoids embedded in a 3D collagen I hydrogel, either uniformly stiffened or calibrated to create a gradient of ECM stiffening, to visually demonstrate the impact of ECM stiffening on transformation and tumor cell invasion. As such, this bioreactor presents the first tunable 3D natural hydrogel system that is capable of independently assessing the role of ECM stiffness on tissue phenotype

    Visualizing mechanical modulation of nanoscale organization of cell-matrix adhesions

    No full text
    The mechanical properties of the extracellular matrix influence cell signaling to regulate key cellular processes, including differentiation, apoptosis, and transformation. Understanding the molecular mechanisms underlying mechanotransduction is contingent upon our ability to visualize the effect of altered matrix properties on the nanoscale organization of proteins involved in this signalling. The development of super-resolution imaging techniques has afforded researchers unprecedented ability to probe the organization and localization of proteins within the cell. However, most of these methods require use of substrates like glass or silicon wafers, which are artificially rigid. In light of a growing body of literature demonstrating the importance of mechanical properties of the extracellular matrix in regulating many aspects of cellular behavior and signaling, we have developed a system that allows scanning angle interference microscopy on a mechanically tunable substrate. We describe its implementation in detail and provide examples of how it may be used to aide investigations into the effect of substrate rigidity on intracellular signaling

    Autolysis in Crustacean Tissues after Death: A Case Study Using the Procambarus clarkii Hepatopancreas

    No full text
    Autolysis is an internal phenomenon following the death of an organism that leads to the degradation of tissues. In order to explore the initial stages of autolysis and attempt to establish reference standards for tissue changes after death, we studied the rapidly autolyzing tissue of the crayfish hepatopancreas. Samples from the hepatopancreas of crayfish were examined 0, 5, 10, 30, 60, and 120 minutes after death. Histological and ultrapathological examinations and evaluations and apoptotic cell counts were conducted to determine the initiation time and degree of autolysis. The results showed that autolysis in the hepatopancreas of crayfish began within 5 minutes. Initially, autolysis manifested in the swelling of hepatic tubular cells and the widening of mesenchyme. Cells undergoing autolysis showed severe organelle necrolysis. Based on these observations, tissue samples should be collected and preserved within five minutes to avoid interfering with histopathological diagnoses
    corecore